پیش بینی خطر ورشکستگی با استفاده از شبکه های عصبی مصنوعی مبتنی بر رویکرد پرسپترون چندلایه(شواهد تجربی: بورس اوراق بهادار تهران)
Authors: not saved
Abstract:
زمینه: در پژوهش حاضر به شناسایی عوامل موثر بر پیش بینی ورشکستگی شرکتهای ایرانی با استفاده از سیستم شبکه های عصبی مصنوعی (ANN) بر مبنای رویکرد پرسپترون چندلایه (PS) و ارائه یک مدل آماری مناسب به منظور برآورد ورشکستگی شرکتهای ایرانی، با استفاده از یافته های حاصل از اجرای شبکه ANN پرداخته شده است. هدف: در پژهش حاضر به دنبال پاسخ گویی به این پرسش هستیم که آیا عوامل سودمند در راستای پیش بینی ورشکستگی شرکتهای ایرانی توسط سیستم شبکه عصبی مصنوعی قابل شناسایی است یا خیر . روشها: جامعه آماری در تحقیق حاضر تمامی شرکتهای پذیرفته شده در بورس اوراق بهادار تهران هستند که با لحاظ نمودن معیارهایی و به روش حذف سیستماتیک تعداد 172 شرکت از این جامعه آماری در بازه زمانی 1386 الی 1395 بعنوان نمونه در تحقیق حاضر انتخاب شده اند. یافتهها: به منظور انجام تحلیل های آماری در پژوهش حاضر از روش سیستم شبکه های عصبی مصنوعی بر مبنای رویکرد پرسپترون چندلایه استفاده شده است. نتیجهگیری: یافته های حاصل از تجزیه و تحلیل داده های پژوهش نشان می دهد که سیستم ANNقادر است با دقتی معادل 98 درصد عوامل تاثیر گذار بر ورشکستگی شرکتهای ایرانی را در سال قبل از ورشکستگی شناسایی نماید.
similar resources
پیش بینی ورشکستگی مالی شرکت های بورس اوراق بهادار تهران با استفاده از شبکههای عصبی مصنوعی
هدف اصلی این مقاله پیشبینی ورشکستگی مالی شرکتها در بورس اوراق بهادار تهران به وسیلهی شبکههای عصبی مصنوعی است. مقادیر میانگین مربوط به نسبتهای مالی کلیدی در پژوهشهای صورت گرفته در پیشینه موضوع بهعنوان ورودی شبکههای عصبی انتخاب شدهاند. شبکه عصبی بهکار گرفته شده در این مقاله از نوع پرسپترون چند لایه است که به روش الگوریتم پس انتشار خطا آموزش دیدهاند و شامل شبکه عصبی پیشخور سه لایه با ت...
full textپیش بینی ورشکستگی شرکت های پذیرفته شده در سازمان بورس و اوراق بهادار با استفاده از شبکه عصبی مصنوعی
آگاهی از وضعیت مالی شرکت های بازار سرمایه همیشه یکی از دغدغه های سهامداران و تحلیلگران اقتصادی است؛ از این رو تحلیل گران و محقیق بازار های مالی همیشه به دنبال روش هایی برای پیش بینی شرایط آتی شرکت های حاضر در بازار سرمایه بودند. تحقیق پیش رو نیز به دنبال ایجاد مدلی برای پیش بینی ورشکستگی شرکت های حاضر در بازار بورس و اوراق بهادار با استفاده از شبکه عصبی مصنوعی است. در این تحقیق از نسبت های مالی...
full textپیش بینی قیمت سهام شرکت های بورس اوراق بهادار تهران با استفاده از شبکه های عصبی مصنوعی
پیشبینی تغییر قیمت سهام به عنوان یک فعالیت چالشانگیز در پیشبینی سریهای زمانی مالی در نظر گرفته میشود. یک پیشبینی صحیح از تغییر قیمت سهام میتواند سود زیادی را برای سرمایهگذاران به بار آورد. با توجه به پیچیدگی دادههای بازار بورس، توسعه مدلهای کارآمد برای پیشبینی بسیار دشوار است. در این پژوهش، مدلی برای پیشبینی قیمت سهام شرکتهای بورس اوراق بهادار تهران با بکارگیری دادههای درونزا...
full textپیش بینی شاخص بورس اوراق بهادار تهران با استفاده از شبکه های عصبی
اندازه و روند شاخصهای قیمت سهام یکی از مهمترین عوامل تاثیرگذار بر تصمیمات سرمایه گذاران در بازارهای مالی میباشد. جهت پیشبینی بازار از تکنیکهای مختلفی استفاده شده است که معمولترین آنها روشهای رگرسیون و مدلهای 3ARIMA هستند اما این مدلها در عمل جهت پیشبینی بعضی از سریها ناموفق بودهاند. در تحقیق حاضر برای پیشبینی شاخص کل بورس از مدل شبکههای عصبی پیش خور4 با قانون یادگیری پس انتشار خطا5 در...
full textپیش بینی شاخص بورس اوراق بهادار تهران با استفاده از شبکه های عصبی مصنوعی
پژوهش حاضر به مطالعه پیش بینی شاخص قیمت سهام در بورس اوراق بهادار تهران به وسیله شبکه های عصبی و ارایه ی شواهدی مبنی بر رفتار آشوبناک شاخص قیمت در بورس اوراق بهادار می پردازد. دو مجموعه از داده ها برای ورودی شبکه عصبی انتخاب شده اند. وقفه های مختلفی از شاخص و عوامل کلان اقتصادی به عنوان متغیرهای مستقل. شبکه های عصبی به کار گرفته شده در این پژوهش از نوع پرسپترون چند لایه (mlp) است که به روش الگو...
full textطراحی مدل پیش بینی ورشکستگی شرکت ها به وسیله شبکه های عصبی فازی (مطالعه موردی:شرکت های بورس اوراق بهادار تهران)
در این مقاله به منظور پیش بینی درصد ورشکستگی شرکت های بورسی از مدلهای شبکه عصبی فازی استفاده گردیده که توانایی کار در محیط پویا و غیر قطعی را امکان پذیر می سازد. در این میان با استفاده از منطق فازی متغییر های مختلف کلامی به منظور تعریف هر شاخص مشخص گردیده است و با ایجاد توابع عضویت هر کدام با استفاده شبکه عصبی به ایجاد یک سیستم یادگیرنده اقدام شده است. از میان مدل های مختلف شبکه عصبی،شبکه پرسی...
full textMy Resources
Journal title
volume 30 issue شماره 4 (پیاپی 119)
pages 205- 218
publication date 2020-02-20
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023